Haploporic acid B and C, New Antibacterial Sesquiterpenoids from the Basidiomycete *Haploporus odorus*

MORITA Yasufumi^{*} MURANAKA Hideaki^{**} SHIBATA Hisao^{***}

Two new dimeric drimane sesquiterpenoid ethers, haploporic acid B (2) and C (3), were isolated from the fruit-bodies of fungus *Haploporus odorus*, together with two known sesquiterpenoid dimmers (1 and 4). These structures were determined by spectroscopic and chemical methods. Haploporic acid B (2) showed strong antibacterial activity against *Staphylococcus aureus*. **Keywords** : Haploporic acid, Drimane sesquiterpenoid, Unsymmetrical dimer, Basidiomycete, *Haploporus odorus*, Antibacterial activity

1. Introduction

In the course of our investigation on chemical components from Basidiomycetes, we have reported the chemotaxonomy of Russulaceae and Boletaceae fungi¹⁻⁵⁾, some biologically active compounds from Aphyllophorales fungi.⁶⁻⁹⁾ Haploporus odorus (Ezoshiroamitake in Japanese, Polyporaceae) is a white-rotting fungus growing mainly on a willow tree, rarely on a cherry tree, in a cold district. Its fruit-body is a white-pale yellow semicircle having a sweet smell like an anise. We have reported the isolation and structural determination of a novel symmetrical dimeric drimane sesquiterpenoid ether of isocitric acid, haploporic acid A (1) form the fruit-bodies of H. odorus.⁸⁾ Further investigation of this fungus, we have been found that the extract of H. odorus had the antibacterial activity against gram-positive bacteria. In this paper, we wish to report the isolation and structural determination of the antibacterial compounds from this fungus.

2. Materials and Methods

The dried fruit-bodies of *H. odorus* (110g) were extracted with dichloromethane, and its extract showed antibacterial activity against *Staphylococcus aureus*. The extract was purified with SiO_2 , ODS, and recrystallized to afford compounds 1-4. The yield of compounds 1-4 were 714.7, 34.6, 28.9, and 419.4 mg, respectively.

^{*}一般教養科

^{**}物質工学科(現·物質化学工学科)

^{***}信州大学農学部応用生命科学科

3. Results and Discussion

Compound **2** (haploporic acid B) was isolated as a colorless oil and the FAB (positive)-MS showed $[M + Na]^+$ at m/z 871, $[M-H+2Na]^+$ at m/z 893, indicating that the molecular weight of **2** is 848. The IR spectrum showed the absorptions of carboxylic acid (3500-2600 and 1715cm⁻¹), ester carbonyl (1740cm⁻¹), and olefine (1640cm⁻¹). In the ¹H-NMR spectrum for **2**, four olefinic proton signals due to two exomethylene $[\delta_H 4.93(1H, d, J=1.8Hz), \delta_H 4.87(1H, d, J=1.2Hz), \delta_H 4.79(1H, d, J=1.8Hz), \delta_H 4.77(1H, d, J=1.2Hz)]$, three methoxyl (δ_H 3.78, 3.69, 3.68, each 3H, *s*) and four *tert*-methyl (δ_H 0.80, 0.76, 0.75, 0.73, each 3H, *s*) groups.

The proton signals due to isocitrate and drimane sesquiterpene moieties were also observed in the ¹H-NMR spectrum for 2, which were supported by ¹H-¹H COSY and HMBC. The ¹³C-NMR spectrum showed 45 carbon signals. The analysis of DEPT and HMQC spectrum suggested it to be as follows ; *tert*-CH₃ x 4, CH₂ x 12, CH x 6, C x 4, OCH₃ x 3, OCH₂ x 4, OCH x 2, >C=CH₂ x 2, COO x 4, COOH x 2, OH x 1. These results suggested that the molecular formula for 2 was $C_{45}H_{68}O_{15}$. The general details of the ¹H- and ¹³C-NMR spectrum were very similar to those of 4 which has been reported from the fungus Haploporus odorus⁸⁾ and Cryptoporus volvatus¹⁰⁾, although small differences were observed. On the other hand, the molecular weight clarified by FAB-MS data and the molecular formula of 2 agreed with those of 4. Thus, 2 was suggested to be the isomer of 4. Finally, further interpretation of HMBC spectrum of 2 clarified that the location of dimerization was at C-4' and C-15'', in which the long range couplings were observed between H-15'' ($\delta_{\rm H}$ 3.87, 3.64) and C-4' ($\delta_{\rm C}$ 170.0), showing in Fig. 1. The absolute stereochemistry of 2 was confirmed by chemical transformation. Methylation with diazomethane, reduction with LAH and acetylation of 2 afforded to **6** showing in Fig. 2. The spectral data of **6** were identical to those of the tetraacetate prepd. from 1 in same methods. Therefore, the structure of 2 including the absolute configuration was determined as 2showing in Fig. 1.

Compound 3 (haploporic acid C) was isolated as a colorless oil. It showed very similar IR absorption to that of 2. The ¹H- and ¹³C-NMR data for 3 were also similar to those of 2 (see Table 1 and 2), except for one methoxyl proton signal ($\delta_{\rm H}$ 3.72, 3H, *s*, $\delta_{\rm C}$ 52.6). On the other hand, the HMBC analysis revealed that the location of dimerization were at C-4' ($\delta_{\rm C}$ 170.2) and C-15'' ($\delta_{\rm H}$ 3.89, 3.69, $\delta_{\rm C}$ 70.5), C-4''' ($\delta_{\rm C}$ 169.7) and C-15 ($\delta_{\rm H}$ 4.47, 3.24, $\delta_{\rm C}$ 71.1) like as 1. Thus, 3 was suggested to be demethyl compound of 1, which was supported by the FAB-MS data (*m/z* 825 [M + Na]⁺). Methylation of 3 with diazomethane afforded to 3-trimethyl, whose analytical data were identical to those of 5 prepd. from 1 in same method. Therefore, the structure of 3 including the absolute configuration was determined as 3 showing in Fig. 1.

Compound 1 (colorless powder, mp 203-204°C, $[\alpha]_D$ +30.0°) and 4 (colorless oil, $[\alpha]_D$ +47.0°) were identified with haploporic acid A and cryptoporic acid E, respectively, by directly comparing their spectral data with those of authentic samples.^{7, 10})

Antibacterial Sesquiterpenoids from H. odorus

Table 1. 'H-NMR Data for Compounds 1-3 and 5"	Table 1.	¹ H-NMR	Data for	Compounds	1-3	and	5 #,\$
---	----------	--------------------	----------	-----------	-----	-----	---------------

pos	ition	1	2	3	5
1	а	1.00. ddd (12.4, 12.4, 3.2*)	1.13. <i>m</i>	1.35. <i>m</i>	1.26. <i>m</i>
	b	1.72, br <i>d</i> (12.4)	1.66, br <i>d</i> (13.2)	1.70, <i>m</i>	1.79, br <i>d</i> (12.6)
2	а	1.45, <i>m</i>	1.55, <i>m</i>	1.54, <i>m</i>	1.50, <i>m</i>
	b	1.55, <i>m</i>	1.55, <i>m</i>	1.60, <i>m</i>	1.60, <i>m</i>
3	а	1.15, ddd (13.2, 13.2, 3.6)	1.25, <i>m</i>	1.25, <i>m</i>	1.23, <i>m</i>
	b	1.45, <i>m</i>	1.45, <i>m</i>	1.63, <i>m</i>	1.60, <i>m</i>
5		1.45, <i>m</i>	1.47, dd (12.6, 2.4)	1.26, <i>m</i>	1.72, dd (12.6, 2.4)
6	а	1.32, <i>m</i>	1.34, <i>m</i>	1.30, <i>m</i>	1.31, ddd (13.2, 13.2 4.2)
	b	1.67, <i>m</i>	1.59, <i>m</i>	1.50, <i>m</i>	1.50, <i>m</i>
7	а	2.05, <i>m</i>	2.09, ddd (12.6, 12.6, 4.8)	1.86, <i>m</i>	1.88, ddd (13.2, 13.2 5.4)
	b	2.46, br <i>d</i> (13.6)	2.40, <i>m</i>	2.31, br d (15.1)	2.24, br <i>d</i> (13.2)
9		1.94, br <i>d</i> (10.8)	2.01, br <i>d</i> (7.8)	2.13, <i>m</i>	2.32, br <i>d</i> (6.0)
11	а	3.89, dd (12.8, 1.2)	3.60, dd (10.2, 3.0)	3.69, <i>m</i>	3.62, <i>dd</i> (9.6, 3.6)
	b	3.98, dd (12.8, 11.2)	3.99, dd (10.2, 9.0)	4.08, dd (9.5, 9.5)	3.82, <i>dd</i> (9.6, 9.6)
12	а	4.84, br <i>s</i>	4.77, <i>d</i> (1.2)	4.55, <i>s</i>	4.29, <i>s</i>
	b	5.01, br <i>s</i>	4.87, <i>d</i> (1.2)	4.84, <i>s</i>	4.75, <i>s</i>
13		0.74, <i>s</i>	0.76, <i>s</i>	0.76, <i>s</i>	0.80, <i>s</i>
14		0.79, <i>s</i>	0.75, <i>s</i>	0.79, <i>s</i>	0.82, <i>s</i>
15	а	3.55, <i>d</i> (11.2)	3.09, <i>d</i> (11.4)	3.24, <i>d</i> (11.2)	3.60, <i>d</i> (11.4)
	b	4.45, d (11.2)	3.43, <i>d</i> (11.4)	4.47, <i>d</i> (11.2)	3.88, <i>d</i> (11.4)
1'		4.05, d (2.0)	4.08, <i>d</i> (5.4)	4.47, <i>d</i> (7.1)	4.18, <i>d</i> (5.4)
2'		3.49, <i>ddd</i> (11.2, 3.2, 2.0)	3.38, <i>ddd</i> (7.2, 6.0, 5.4)	3.42, ddd (7.8, 7.1, 6.1)	3.45, <i>ddd</i> (9.6, 5.4, 4.2)
3'	а	2.77, <i>dd</i> (16.4, 3.2)	2.71, <i>dd</i> (16.2, 7.2)	2.67, <i>dd</i> (17.3, 6.1)	2.58, <i>dd</i> (16.8, 4.2)
	b	2.92, <i>dd</i> (16.4, 11.2)	2.91, <i>dd</i> (16.2, 6.0)	2.80, <i>dd</i> (17.3, 7.8)	2.80, <i>dd</i> (16.8, 9.6)
1"	а		1.13, <i>m</i>	1.22 m	
	b		1.71, br <i>d</i> (12.6)	1.70 <i>m</i>	
2"	а		1.55, <i>m</i>	1.54 m	
	b		1.55, <i>m</i>	1.60 <i>m</i>	
3"	a		1.25, <i>m</i>	1.25 m	
	b		1.45, <i>m</i>	1.50 m	
5"			1.44, <i>dd</i> (12.6, 2.4)	1.26 m	
6"	a		1.34, <i>m</i>	1.30 m	
	b		1.59, m	1.68 m	
7	a		1.95, <i>ddd</i> (12.6, 12.6, 4.2)	1.86 m	
0"	b		2.36, m	2.26, br d (16.3)	
9			1.80, br a (8.4)	2.10 m	
11	a L		3.67, ad(10.2, 3.0)	3.69 m	
1.2"	0		3.93, t (10.2)	5.75 m 4.90 a	
12	a h		4.79, a (1.8)	4.89, S	
12"	U		4.93, u (1.8)	4.70, s	
1.4"			0.73, 3	0.72, s	
15"	а		3.64 d(11.2)	3.68 d(10.9)	
15	u h		3.97 d(11.2)	3.89 d(10.9)	
1'''	0		4.29 d (4.2)	4 30. br s	
2'''			3.51. ddd (10.2, 4.2, 3.6)	3.68. m	
3""	а		2.80, <i>dd</i> (17.4, 10.2)	2.64, dd (16.6, 4.6)	
-	b		2.88, <i>dd</i> (17.4, 3.6)	2.96, <i>dd</i> (16.6, 8.8)	
OM	Ie	3.68, <i>s</i>	3.68, <i>s</i>	3.72, <i>s</i>	3.71, <i>s</i>
			3.69, <i>s</i>	·	3.71, <i>s</i>
			3.78. 5		

Recorded at 500MHz in CDCl₃.

 $\$ Signals were assigned by COSY, HMQC and HMBC.

* *J*(Hz)

Table 2.	¹³ C-NMR Data for Compounds 1-3 and			
position	1	2	3	5
1	39.3	38.3	38.5	39.4
2	18.8	18.6	18.5	18.5
3	36.6	35.2	35.4	35.6
4	38.8	37.4	38.5	37.3
5	47.8	47.8	46.4	46.7
6	23.0	23.4	23.2	23.3
7	36.4	37.1	36.9	36.9
8	145.4	146.4	146.8	147.7
9	51.9	54.9	56.7	55.4
10	37.9	38.4	37.3	39.7
11	64.0	68.0	69.6	70.7
12	109.3	108.2	107.9	107.4
13	15.9	15.8	15.6	14.8
14	17.4	17.7	17.6	17.9
15	69.7	71.8	71.1	71.3
1'	73.0	77.8	77.2	79.5
2'	44.4	44.6	43.5	44.1
3'	32.5	33.1	31.5	31.8
4'	169.3	170.0	170.2	170.6
5'	170.1	171.1	171.9	171.4
6'	179.7	178.0	176.7	172.0
1"		38.8	38.6	
2"		18.4	18.5	
3"		35.8	35.5	
4"		37.9	38.8	
5		47.2	46.4	
6" 7"		23.2	23.4	
/" 0"		37.0	37.1	
8" 0"		145.7	147.8	
9		54.5 29.4	54.1	
10		58.4 67.4	57.7 68 5	
11		102.9	107.2	
12		108.8	107.5	
13		17.8	17.8	
14		70.0	70.5	
15		76.8	70.5	
1 2'''		/0.8 /3.6	79. 4 11.6	
2 3'''		45.0 31.4	32.2	
5 4'''		171.5	169.7	
		170.9	173.0	
5 6'''		178.4	176.2	
OMe	52 3	52.3	52.6	52.0
01110	-	52.3	-	52.3
	-	52.4	-	-

Arrows show the diagnostically significant C-H correlation found by HMBC.

Recorded at 125Hz in CDCl₃

^{\$} Signals were assigned by DEPT, HMQC and HMBC.

Fig. 2. Chemical transformation to a related compound 6.

bacteria	concentration [#] (µg/disk)				
compounds	B. subtilis	S. aureus	P. fluorescens	E. coli	
1 (haploporic acid A)	50	6.25	NA ^{\$}	NA	
2 (haploporic acid B)	25	1.56	NA	NA	
3 (haploporic acid C)	50	6.25	NA	NA	
4 (cryptoporic acid E)	100	100	NA	NA	

Table 3. Minimum Inhibitory Concentration of compounds 1-4 on Bacteria (MIC)

#: Samples were tested at 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56, 0.78 and 0.39 µg/disk by the paper disk method. The minimum concentrations necessary to cause a clear inhibition zone over 8mm are listed.

: NA; no activity at the highest does tested (200 μ g/disk).

Antibacterial activity of dimeric drimane sesquiterpenes of isocitric acid (1-4) were measured by the paper disc method. The results are summarized in Table 3. Compound 2 (haploporic acid B) showed strong antibacterial activity, 1 (haploporic acid A) and 3 (haploporic acid C) showed moderate activity, and 4 (cryptoporic acid E) showed weak activity against two gram-positive bacteria. However, all compounds indicated no activity against two gram-negative bacteria. The activity-enhancing effect of these compounds on antibacterial activity was suggested to the location of dimerization, because the unsymmetrical dimer 2 esterizing at C-4' and C-15'' was higher activity than 4 esterizing at C-5' and C-15''.

4. Experimental

Instruments. NMR spectra (TMS as the internal standard) were obtained with a Bruker AC500 instrument, and IR spectra were recorded on a Jasco FT/IR-8000 spectrometer. MS spectra were measured with JEOL AX-500. The optical rotation was measured with a Jasco DIP-1000.

Extraction and Isolation of compounds 1-4. The dried fruiting bodies (110g) of *H. odorus* collected in Nagano prefecture, Japan, were extracted with methylene chloride (100ml) to afford a pale yellow paste (18g), which showed antibacterial activity (the minimum inhibitory concentration = $100\mu g$ per disc) against *Staphylococcus aureus*, The extract was chromatographed on silica gel, eluting with CHCl₃, CHCl₃-MeOH (20:1), (10:1), (5:1), (1:1), and MeOH, in that order. A CHCl₃-MeOH (10:1) eluent was rechromatographed on silica gel, and a CHCl₃-EtOAc (5:1) eluent was triturated with benzene to afford 1 (714.7mg). A CHCl₃-MeOH (1:1) eluent was chromatographed on silica gel, eluting with CHCl₃, CHCl₃-Me₂CO (5:1), (1:1), and Me₂CO, in that order, to afford eight fractions. Fraction 3 [CHCl₃-Me₂CO (5:1) eluent] gave 4 (419.4mg). A MeOH eluent was chromatographed on silica gel, eluting with CHCl₃-Me₂CO (5:1) eluent] gave 4 (419.4mg). A MeOH, in that order, to afford fifteen fractions. The mixture of fractions 6-9 were rechromatographed on ODS gel, a MeOH-water (10:1) eluent gave 3 (28.9mg).

Compound 1 (haploporic acid A). Colorless powder, mp 203-204°C, $[\alpha]_D$ +30.0° (*c* 0.1, CHCl₃).

Compound 2 (haploporic acid B). Colorless oil, $[\alpha]_D + 37.1^\circ$ (c 0.1, CHCl₃), FAB(positive)-MS: m/z 871 [M + Na]⁺, m/z 893 [M + 2Na]⁺. IR v_{max} (KBr)cm⁻¹: 3500-2600, 2930, 1740, 1715, 1640, 1440, 1380, 1220, 1130, 1040, 890, 670. ¹H and ¹³C-NMR spectral data are shown in Tables 1 and 2.

Compound 3 (haploporic acid C). Colorless oil, $[\alpha]_D$ +42.1° (c 0.1, CHCl₃), FAB(positive)-MS: m/z 825 [M + Na]⁺, m/z 847 [M + 2Na]⁺. IR v_{max} (KBr)cm⁻¹: 3500-2600, 2930, 1730, 1710, 1640, 1440, 1380, 1220, 1130, 1040, 890. ¹H and ¹³C-NMR spectral data are shown in Tables 1 and 2.

Compound **4** (*cryptoporic acid E*). Colorless oil, $[\alpha]_D$ +47.0° (*c* 0.1, CHCl₃).

Compound 5 prepd. by methanolysis of 1. Compound 1 (180.0mg) was methylated with ethereal CH₂N₂ (12ml) in usual way to give a colorless solid, which was recrystallized from *n*-hexane-EtOAc (2:1) to afford compound 5 as colorless needles (133.0mg), mp 100-102°C, $[\alpha]_D$ +18.0° (*c* 0.1, CHCl₃), FAB(positive)-MS: *m/z* 867 [M + Na]⁺, *m/z* 889 [M + 2Na]⁺. IR v_{max} (KBr)cm⁻¹:2930, 1740, 1635, 1440, 1380, 1280, 1130, 1000, 890. ¹H and ¹³C-NMR spectral data are shown in Tables 1 and 2.

Compound 6 prepd. by reduction and acetylation of 5. To a suspension of LiAlH₄ (100mg) in dry Et₂O (10ml) was added compound 5 (116.3mg) in dry Et₂O (7ml) and stirred for 4 hrs at room temp. The reaction mixture was extracted with EtOAc, and the extract (88.6mg) was chromatographed on silica gel. The CHCl₃-EtOAc (5:1) eluent was acetylated with Ac₂O-pyridine (each 1ml) to give a colorless oil (compound 6 : 22.9mg), $[\alpha]_D$ +14.7° (*c* 0.1, CHCl₃), EIMS: *m/z* 538 [M]⁺, IR v_{max} (KBr)cm⁻¹:2930, 1740, 1640, 1440, 1380, 1360, 1230, 1100, 1040, 890, 640. ¹H-NMR δ_H (CDCl₃): 4.86(1H, *d*, *J*=1.1Hz), 4.64(1H, *d*, *J*=1.1Hz), 4.29(1H, *dd*, *J*=11.9, 3.9Hz), 4.12(5H, *m*), 3.85(1H, *d*, *J*=10.9Hz), 3.75(1H, *q*, *J*=8.2Hz), 3.63(1H, *d*, *J*=10.9Hz), 3.60(1H, *m*), 3.47(1H, *m*), 2.37(1H, br *d*, *J*=13.5Hz), 2.09, 2.08, 2.06, 2.05(each 3H, *s*), 1.97(1H, *m*), 1.82-1.55(6H, *m*), 1.43-1.17(7H, *m*), 0.82(3H, *s*), 0.75(3H, *s*). ¹³C-NMR δ_C (CDCl₃): 171.3, 170.9, 170.8(x 2), 146.6, 107.7, 77.6, 72.8, 67.4, 64.3, 63.6, 62.4, 56.1, 48.9, 38.7, 38.6, 37.3, 36.9, 36.8, 35.7, 27.1, 23.7, 21.0(x 4), 18.4, 17.6, 15.8.

Methanolysis of compound **3**. Compound **3** (3.0mg) was methylated with ethereal CH_2N_2 (5ml) to give a colorless crystal (2.9mg), mp 100-103°C, $[\alpha]_D$ +18.5° (*c* 0.1, CHCl₃), whose spectral data were identical to those of **5** prepd. from compound **1**.

Preparation of tetraacetate from compound 2. Compound 2 (22.1mg) was methylated with ethereal CH₂N₂ (5ml), following by reduction with LiAlH₄ (30mg) in Et₂O (3ml) to afford a residue, which was chromatographed on silica gel. The CHCl₃-MeOH (5:1) eluent was acetylated with the same reagents as described above to furnish a tetraacetate (9.3mg) as a colorless oil, $[\alpha]_D$ +14.7° (*c* 0.1, CHCl₃), of which spectral data were identical to those of **6** prepd. from compound **1**, completely.

Measurement of antibacterial activity. Compounds 1-4 were tested at 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56, 0.78 and 0.39 μ g per disc by the paper disc method (ϕ =6mm, thin, TOYO) against Bacillus subtilis NBRC3007, Staphylococcus aureus NBRC3060, Escherichia coli NBRC3301 and Pseudomonas fluorescens NBRC3081. The minimum inhibitory concentrations of compounds 1-4 necessary to cause a clear inhibitory zone over 8 mm are shown in Table 3.

5. Acknowledgement

The authors thank Professor Y. Asakawa and Dr. T. Hashimoto, Tokushima Bunri University for their kind suggestions and discussions.

6. References

1) Kobata, K., Wada, T., Hayashi, Y., and Shibata, H., Volemolide, a novel norsterol from the fungus *Lactarius volemus. Biosci. Biotechnol. Biochem.*, **58**, 1542-1544 (1994).

2) Kobata, K., Kano, S., Hayashi, Y., and Shibata, H., New lactarane sesquiterpenoid from the fungus *Russula emetica. Biosci. Biotechnol. Biochem.*, **59**, 316-318 (1995).

3) Wada, T., Kobata, K., Hayashi, Y., and Shibata, H., Two chemotypes of *Boletus cavipes. Biosci. Biotechnol. Biochem.*, **59**, 1036-1039 (1995).

4) Wada, T., Hayashi, Y., and Shibata, H., Asiaticsin A and B, novel prenylated phenolics from *Boletus asiaticus* and *B. paluster* (Boletuceae) fungi. *Biosci. Biotechnol. Biochem.*, **60**, 120-121 (1996).

5) Shibata, H., Fukuda, T., Wada, T., Morita, Y., Hashimoto, T., and Asakawa, Y., Ornatipolide, a novel phenolic metabolite from the basidiomycete *Boletus ornatipes*. *Biosci. Biotechnol. Biochem.*, **56**, 1432-1434 (1998).

6) Shibata, H., Tokunaga, T., Karasawa, D., Hirota, A., Nakayama, M., Nozaki, H., and Tada, T., Isolation and characterization of new bitter diterpenoids from the fungus *Sarcodon scabrosus*. *Agric*. *Biol. Chem.*, **53**, 3373-3375 (1989).

7) Misawa, H., Matsui, Y., Uehara, H., Tanaka, H., Ishihara, M., and Shibata, H., Tyrosinase

7

inhibitors from Albatrellus confluens. Biosci. Biotechnol. Biochem., 56, 1660-1661 (1992).

8) Morita, Y., Hayashi, Y., Sumi, Y., Kodaira, A., and Shibata, H., Haploporic acid A, a novel dimeric drimane sesquiterpenoid from the basidiomycete *Haploporus odorus*. *Biosci. Biotechnol. Biochem.*, **59**, 2008-2009 (1995).

9) Shibata, H., Irie, A., and Morita, Y., New antibacterial diterpenoids from the Sarcodon scabrosus fungus. *Biosci. Biotechnol. Biochem.*, **62**, 2450-2452 (1998).

10) Asakawa, Y., Hashimoto, T., Mizuno, Y., Tori, M., Fukazawa, Y., Cryptoporic acids A-G, drimane-type sesquiterpenoid ethers of isocitric acid from the fungus *Cryptoporus volvatus*, *Phytochem.*, **31**, 579-592 (1992).