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ANOTEONREGULARSEQUENCESANDTHEKOSZULCOMPLEX

A NOTE ON REGULAR SEQUENCES AND THE KOSZUL
COMPLEX

MASARU KAGEYAMA

Abstract. In the present paper, we shall prove several basic theorems for
regular sequences and the Koszul complex, in a more general setting.

Introduction

Let A be a Noetherian ring, I be an ideal of A and M be a finite A-module.
First of all, let us recall several basic facts of M -regular sequences and I-depth of
M .

We say that a1, . . . , ar ∈ I is an M -regular sequence(or simply M -sequence) in
I of length r, if the following conditions are satisfied:

(1) for each 1 6 i 6 r, ai is not a zero-divisor on M/(a1, . . . , ai−1)M ;

(2) M 6= (a1, . . . , ar)M .

If, moreover, there exists no b ∈ I such that a1, . . . , ar, b is M -regular, then
a1, . . . , ar is said to be a maximal M -regular sequence in I.

Theorem A (cf. Theorem 2.1). Let A be a Noetherian ring, M be a finite A-
module and I be an ideal of A such that IM 6= M . Then all maximal M -sequences
in I have the same length n, furthermore n given by

n = inf{ i | Exti
A(A/I, M) 6= 0 }.

The integer n above is called I-depth of M and denoted by depth(I, M) (if IM =
M , we set depth(I, M) = ∞).

We shall prove that Theorem A holds in a more general setting pointed out by
Prof. Matsumura in [2]. In detail the hypothesis that M is a finite A-module can
be weakened to the statement that M is a finite B-module for a homomorphism
A −→ B of Noetherian rings.

Finally we would like to thank Prof. H.Chiba for his kindness and valuable
correspondences for publishing.

1. preliminaries

Let us begin with the following lemma. It is seem to be simple but the technical
core of this paper.
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Lemma 1.1. Let M be a finite B-module for a homomorphism ϕ : A → B of
Noetherian rings. Let I be an ideal of A consisting entirely of zero-divisors of M .
If we set AssB(M) = {P1, . . . , Pr} and pi = Pi ∩ A, then pi ∈ AssA(M) for all i
and there exists pj ∈ AssA(M) such that I ⊆ pj.

Proof. It is easy to see that Pi = annB(m) for some m ∈M implies pi = annA(m)
by the definition of module structures. Hence pi ∈ AssA(M) for all i.

For any x ∈ I, there exists m ∈ M such that xm = 0, m 6= 0. Since xm =
ϕ(x)m = 0, ϕ(x) is a zero-divisor of M as a B-module. Thus ϕ(x) is contained in⋃r
i=1 Pi and ϕ(x) ∈ Pj for some 1 6 j 6 r. So x ∈ pj . Therefore I ⊆ pj . �

Remark 1.1. Note that according to [1] (9.A), we have, more precisely

AssA(M) = {p1, . . . , pr}.

By virtue of Lemma 1.1, we have the following generalized theorem:

Theorem 1.2. Let M be a finite B-module for a homomorphism A → B of Noe-
therian rings and I an ideal of A with IM 6= M . Let n > 0 be an integer. Then
the following are equivalent:

(1) ExtiA(N,M) = 0 for all i < n and for any finite A-module N with Supp(N) ⊆
V (I);

(2) ExtiA(A/I,M) = 0 for all i < n;

(3) There exists a finite A-module N with Supp(N) = V (I) such that ExtiA(N,M)
= 0 for all i < n;

(4) There exists an M -sequence a1, . . . , an of length n in I.

Proof. (1) =⇒ (2): Since SuppA(A/I) = V (annA(A/I)) = V (I) and A/I is a finite
A-module, ExtiA(A/I,M) = 0 for all i < n.

(2) =⇒ (3) is obvious.

(3) =⇒ (4): If I consists only of zero-divisors of M , then by using Lemma 1.1,
there exists an associated prime p ⊇ I of M . Hence there exists the exact sequence

0 −−−−→ A/p −−−−→ M.

Localising at p, we get the injective Ap-homomorphism ϕ : k −→ Mp where k is
the residue field of Ap. Now p is contained in V (I) = SuppA(N), so that Np 6= 0,
and hence by Nakayama’s lemma, N ⊗A k = Np/pNp 6= 0. Thus N ⊗A k is non
zero vector space over k and hence its dual space Homk(N ⊗A k, k) is not zero. We
take 0 6= ψ ∈ Homk(N ⊗A k, k) and consider a sequence of Ap-homomorphisms

Np −−−−→ N ⊗A k
ψ−−−−→ k

ϕ−−−−→ Mp.

Here the first arrow is a surjective homomorphism because it is induced by a
canonical map Ap −→ k. Hence, HomAp(Np,Mp) 6= 0. The left-hand side is
equal to (HomA(N,M))p because N is a finite A-module, so that Ext0

A(N,M) =
HomA(N,M) 6= 0. But this contradicts (3). Hence I contains an M -regular element
f . M/fM 6= 0 because M/IM 6= 0. If n = 1 then we are done. Assume n > 1, we
set M1 = M/fM , then the exact sequence

0 −−−−→ M
f−−−−→ M −−−−→ M1 −−−−→ 0
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leads to the long exact sequence

0 −−−−→ Ext0
A(N, M) −−−−→ Ext0

A(N, M) −−−−→ Ext0
A(N, M1)

−−−−→ Ext1
A(N, M) −−−−→ Ext1

A(N, M) −−−−→ Ext1
A(N, M1)

−−−−→ Ext2
A(N, M) −−−−→ · · · .

By the assumption, we have

Ext0
A(N, M1) = · · · = Extn−2

A (N, M1) = 0.

So Exti
A(N, M1) = 0 for all i < n − 1. Since M1/IM1 = M/IM 6= 0, by inductive

hypothesis, there exists an M1-sequence f2, . . . , fn of length n − 1 in I. Hence
f1, f2, . . . , fn is an M -sequence of the length n in I. Thus we get the assertion.

(4) =⇒ (1): We show this by induction on n. For n = 1, there exists an M -
regular element f1 ∈ I. We set M1 = M/f1M , then the short exact sequence

0 −−−−→ M
f1−−−−→ M −−−−→ M1 −−−−→ 0

leads the exact sequence

0 −−−−→ HomA(N, M)
f1−−−−→ HomA(N, M).

Since N is a finite A-module, SuppA(N) = V (annA(N)) so that we have
√

annA(N)
⊇

√
I ⊇ I. Hence f l

1 HomA(N, M) = 0 for a sufficiently large l > 0. Therefore we
have Ext0

A(N, M) = HomA(N, M) = 0, because f1 is injective. For n > 1, then
f2, . . . , fn is an M1-sequence of length n − 1. By inductive hypothesis, we have
Exti

A(N, M1) = 0 for all i < n − 1. Hence the short exact sequence

0 −−−−→ M
f1−−−−→ M −−−−→ M1 −−−−→ 0

leads the long exact sequence

0 −−−−→ Ext0
A(N, M)

f1−−−−→ Ext0
A(N, M) −−−−→ Ext0

A(N, M1) = 0

−−−−→ Ext1
A(N, M)

f1−−−−→ Ext1
A(N, M) −−−−→ Ext1

A(N, M1) = 0

−−−−→ Ext2
A(N, M)

f1−−−−→ · · · .

Thus we have the exact sequence

0 −−−−→ Exti
A(N, M)

f1−−−−→ Exti
A(N, M)

for all i < n. Since I ⊆
√

annA(N) and Exti
A(N, M) is annihilated by elements

of annA(N), we have f l
1 Exti

A(N, M) = 0 for a sufficiently large l > 0. Therefore
Exti

A(N, M) = 0 for all i < n. �

2. main results

Now we come to the main result of the paper.

Theorem 2.1. Let M be a finite B-module for a homomorphism A → B of Noe-
therian rings and I an ideal of A with IM 6= M . Then, the length of a maximal
M -sequence in I is the same length n, furthermore n is determined by

Exti
A(A/I, M) = 0 for all i < n and Extn

A(A/I, M) 6= 0.

Proof. Let us begin with the following claim:
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Claim 2.2. Let a1, . . . , an ∈ I be an M -sequence. Then there exists a sequence of
injective homomorphisms

0 −−−−→ HomA(A/I, Mn) −−−−→ Ext1
A(A/I, Mn−1) −−−−→ · · ·

· · · −−−−→ Extn−1
A (A/I, M1) −−−−→ Extn

A(A/I, M),
where Mi = M/(a1, . . . , ai)M .

Proof. By an is Mn−1-regular, we have the short exact sequence

0 −−−−→ Mn−1
an−−−−→ Mn−1 −−−−→ Mn −−−−→ 0.

This leads the long exact sequence

· · · → HomA(A/I, Mn−1) → HomA(A/I, Mn) → Ext1
A(A/I, Mn−1) → · · · .

Since an is an Mn−1-sequence of length 1, by Theorem 1.2, HomA(A/I, Mn−1) = 0.
Thus

HomA(A/I, Mn) ↪→ Ext1
A(A/I, Mn−1).

Next an−1 is Mn−2-regular, the short exact sequence

0 −−−−→ Mn−2
an−1−−−−→ Mn−2 −−−−→ Mn−1 −−−−→ 0.

leads the long exact sequence

· · · → Ext1
A(A/I, Mn−2) → Ext1

A(A/I, Mn−1) → Ext2
A(A/I, Mn−2) → · · · .

Since an, an−1 is an Mn−2-sequence of length 2, by Theorem 1.2, Ext1
A(A/I, Mn−2)

= 0, so that
Ext1

A(A/I, Mn−1) ↪→ Ext2
A(A/I, Mn−2).

Similarly proceeding this way, we get our assertion. �

Let a1, . . . , an ∈ I be a maximal M -sequence. If Extn
A(A/I, M) = 0 by the

above claim, we have HomA(A/I, Mn) = 0. By Theorem 1.2, there exists an Mn-
regular element an+1 ∈ I and so we have an M -sequence a1, . . . , an+1 in I, but this
contradicts to the maximality of a1, . . . , an. Thus we get the assertion. �

Finally, let us see that a basic result on the Koszul complex can be generalized:

Theorem 2.3. Let M be a finite B-module for a homomorphism A → B of Noe-
therian rings and I = (y1, . . . , yn) an ideal of A such that IM 6= M . If we set

q = sup{i | Hi(y, M) 6= 0},

then any maximal M -sequence in I has length n − q.

Proof. Let x1, . . . , xs be a maximal M -sequence in I. We prove this by induction
on s. For s = 0, every element of I is a zero-divisor of M . By Lemma 1.1, there
exists p ∈ AssA(M) such that I ⊆ p. Then, there exists 0 6= ξ ∈ M such that
p = annA(ξ), and hence Iξ = 0. Thus ξ ∈ Hn(y, M) because Hn(y, M) = {ξ ∈
M |y1ξ = · · · = ynξ = 0}, so that q = n and the assertion holds in this case.

For s > 0, we set M1 = M/x1M . Then, the short exact sequence

0 −−−−→ M
x1−−−−→ M −−−−→ M1 −−−−→ 0

leads the long exact sequence (see [3, Proposition 1.6.11]),

· · · −−−−→ Hi(y, M) x1−−−−→ Hi(y, M) −−−−→ Hi(y, M1)

−−−−→ Hi−1(y, M) x1−−−−→ Hi−1(y, M) −−−−→ Hi−1(y, M1) −−−−→ · · · .
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By [2, Theorem 16.4], IHi(y, M) = 0, so that

Ker
(
Hi(y, M) −→ Hi(y, M1)

)
= Im x1 = 0,

Im
(
Hi(y, M1) −→ Hi−1(y, M)

)
= Ker x1 = Hi−1(y, M).

Thus we have the short exact sequence

0 −−−−→ Hi(y, M) −−−−→ Hi(y, M1) −−−−→ Hi−1(y, M) −−−−→ 0

for all i. If Hq+1(y, M1) = 0 then Hq(y, M) = 0 from the above exact sequence. But
this is a contradiction, hence Hq+1(y, M1) 6= 0. Since Hi−1(y, M) = Hi(y, M) = 0
for all i > q+1, so that Hi(y, M1) = 0. This means that q+1 = sup{ i | Hi(y, M1) 6=
0}. Since M1 is a finite B-module and M1 6= IM1, by the inductive hypothesis,
s − 1 = n − (q + 1). Therefore s = n − q. �
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