A NOTE ON REGULAR SEQUENCES AND THE KOSZUL COMPLEX

MASARU KAGEYAMA

Abstract. In the present paper, we shall prove several basic theorems for regular sequences and the Koszul complex, in a more general setting.

INTRODUCTION

Let A be a Noetherian ring, I be an ideal of A and M be a finite A-module. First of all, let us recall several basic facts of M-regular sequences and I-depth of M.

We say that $a_1, \ldots , a_r \in I$ is an M-regular sequence (or simply M-sequence) in I of length r, if the following conditions are satisfied:

(1) for each $1 \leq i \leq r$, a_i is not a zero-divisor on $M/(a_1, \ldots , a_{i-1})M$;
(2) $M \neq (a_1, \ldots , a_r)M$.

If, moreover, there exists no $b \in I$ such that a_1, \ldots , a_r, b is M-regular, then a_1, \ldots , a_r is said to be a maximal M-regular sequence in I.

Theorem A (cf. Theorem 2.1). Let A be a Noetherian ring, M be a finite A-module and I be an ideal of A such that $IM \neq M$. Then all maximal M-sequences in I have the same length n, furthermore n given by

$$n = \inf \{ i \mid \text{Ext}^i_A(A/I, M) \neq 0 \}.$$}

The integer n above is called I-depth of M and denoted by $\text{depth}(I, M)$ (if $IM = M$, we set $\text{depth}(I, M) = \infty$).

We shall prove that Theorem A holds in a more general setting pointed out by Prof. Matsumura in [2]. In detail the hypothesis that M is a finite A-module can be weakened to the statement that M is a finite B-module for a homomorphism $A \rightarrow B$ of Noetherian rings.

Finally we would like to thank Prof. H.Chiba for his kindness and valuable correspondences for publishing.

1. PRELIMINARIES

Let us begin with the following lemma. It is seem to be simple but the technical core of this paper.

2000 Mathematics Subject Classification. Primary 13D07; Secondary 13C15.
Key words and phrases. M-sequence, Ext, I-depth.

※教養学科（講師）
（平成21年3月31日受付）
Lemma 1.1. Let M be a finite B-module for a homomorphism $\phi: A \to B$ of Noetherian rings. Let I be an ideal of A consisting entirely of zero-divisors of M. If we set $\text{Ass}_B(M) = \{P_1, \ldots, P_r\}$ and $p_i = P_i \cap A$, then $p_i \in \text{Ass}_A(M)$ for all i and there exists $p_j \in \text{Ass}_A(M)$ such that $I \subseteq p_j$.

Proof. It is easy to see that $P_i = \text{ann}_B(m)$ for some $m \in M$ implies $p_i = \text{ann}_A(m)$ by the definition of module structures. Hence $p_i \in \text{Ass}_A(M)$ for all i.

For any $x \in I$, there exists $m \in M$ such that $xm = 0$, $m \neq 0$. Since $xm = \phi(x)m = 0$, $\phi(x)$ is a zero-divisor of M as a B-module. Thus $\phi(x)$ is contained in $\bigcup_{i=1}^r P_i$ and $\phi(x) \in P_j$ for some $1 \leq j \leq r$. So $x \in p_j$. Therefore $I \subseteq p_j$. \hfill \square

Remark 1.1. Note that according to [1] (9.A), we have, more precisely

$$\text{Ass}_A(M) = \{p_1, \ldots, p_r\}.$$

By virtue of Lemma 1.1, we have the following generalized theorem:

Theorem 1.2. Let M be a finite B-module for a homomorphism $A \to B$ of Noetherian rings and I an ideal of A with $IM \neq M$. Let $n > 0$ be an integer. Then the following are equivalent:

1. $\text{Ext}_A^i(N, M) = 0$ for all $i < n$ and for any finite A-module N with $\text{Supp}(N) \subseteq V(I)$;

2. $\text{Ext}_A^i(A/I, M) = 0$ for all $i < n$;

3. There exists a finite A-module N with $\text{Supp}(N) = V(I)$ such that $\text{Ext}_A^i(N, M) = 0$ for all $i < n$;

4. There exists an M-sequence a_1, \ldots, a_n of length n in I.

Proof. (1) \implies (2): Since $\text{Supp}_A(A/I) = V(\text{ann}_A(A/I)) = V(I)$ and A/I is a finite A-module, $\text{Ext}_A^i(A/I, M) = 0$ for all $i < n$.

(2) \implies (3) is obvious.

(3) \implies (4): If I consists only of zero-divisors of M, then by using Lemma 1.1, there exists an associated prime $p \supseteq I$ of M. Hence there exists the exact sequence

$$0 \longrightarrow A/p \longrightarrow M.$$

Localising at p, we get the injective A_p-homomorphism $\phi: k \longrightarrow M_p$ where k is the residue field of A_p. Now p is contained in $V(I) = \text{Supp}_A(N)$, so that $N_p \neq 0$, and hence by Nakayama’s lemma, $N \otimes_A k = N_p/pN_p \neq 0$. Thus $N \otimes_A k$ is non zero vector space over k and hence its dual space $\text{Hom}_k(N \otimes_A k, k)$ is not zero. We take $0 \neq \psi \in \text{Hom}_k(N \otimes_A k, k)$ and consider a sequence of A_p-homomorphisms

$$N_p \longrightarrow N \otimes_A k \longrightarrow k \overset{\psi}{\longrightarrow} k \overset{\phi}{\longrightarrow} M_p.$$

Here the first arrow is a surjective homomorphism because it is induced by a canonical map $A_p \longrightarrow k$. Hence, $\text{Hom}_{A_p}(N_p, M_p) \neq 0$. The left-hand side is equal to $(\text{Hom}_A(N, M))_p$ because N is a finite A-module, so that $\text{Ext}_A^0(N, M) = \text{Hom}_A(N, M) \neq 0$. But this contradicts (3). Hence I contains an M-regular element f. $M/fM \neq 0$ because $M/I M \neq 0$. If $n = 1$ then we are done. Assume $n > 1$, we set $M_1 = M/fM$, then the exact sequence

$$0 \longrightarrow M \overset{f}{\longrightarrow} M \longrightarrow M_1 \longrightarrow 0$$

is a counterexample. Therefore $n > 1$.
leads to the long exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & \text{Ext}_A^0(N, M) & \longrightarrow & \text{Ext}_A^0(N, M) & \longrightarrow & \text{Ext}_A^0(N, M_1) \\
& \longrightarrow & \text{Ext}_A^1(N, M) & \longrightarrow & \text{Ext}_A^1(N, M) & \longrightarrow & \text{Ext}_A^1(N, M_1) \\
& & \longrightarrow & \text{Ext}_A^2(N, M) & \longrightarrow & \cdots.
\end{array}
\]

By the assumption, we have

\[
\text{Ext}_A^0(N, M_1) = \cdots = \text{Ext}_A^{n-2}(N, M_1) = 0.
\]

So \(\text{Ext}_A^i(N, M_1) = 0\) for all \(i < n - 1\). Since \(M_1/I^1 M = M/IM \neq 0\), by inductive hypothesis, there exists an \(M_1\)-sequence \(f_2, \ldots, f_n\) of length \(n - 1\) in \(I\). Hence \(f_1, f_2, \ldots, f_n\) is an \(M\)-sequence of length \(n\) in \(I\). Thus we get the assertion.

(4) \(\Rightarrow\) (1): We show this by induction on \(n\). For \(n = 1\), there exists an \(M\)-regular element \(f_1 \in I\). We set \(M_1 = M/f_1 M\), then the short exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & M & \xrightarrow{f_1} & M & \longrightarrow & M_1 & \longrightarrow & 0
\end{array}
\]

leads the exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & \text{Hom}_A(N, M) & \xrightarrow{f_1} & \text{Hom}_A(N, M).
\end{array}
\]

Since \(N\) is a finite \(A\)-module, \(\text{Supp}_A(N) = V(\text{ann}_A(N))\) so that we have \(\sqrt{\text{ann}_A(N)} \supseteq \sqrt{I} \supseteq I\). Hence \(f_1^i \text{Hom}_A(N, M) = 0\) for a sufficiently large \(l > 0\). Therefore we have \(\text{Ext}_A^0(N, M) = \text{Hom}_A(N, M) = 0\), because \(f_1\) is injective. For \(n > 1\), then \(f_2, \ldots, f_n\) is an \(M_1\)-sequence of length \(n - 1\). By inductive hypothesis, we have \(\text{Ext}_A^i(N, M_1) = 0\) for all \(i < n - 1\). Hence the short exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & M & \xrightarrow{f_1} & M & \longrightarrow & M_1 & \longrightarrow & 0
\end{array}
\]

leads the long exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & \text{Ext}_A^0(N, M) & \xrightarrow{f_1} & \text{Ext}_A^0(N, M) & \longrightarrow & \text{Ext}_A^0(N, M_1) = 0 \\
& \longrightarrow & \text{Ext}_A^1(N, M) & \xrightarrow{f_1} & \text{Ext}_A^1(N, M) & \longrightarrow & \text{Ext}_A^1(N, M_1) = 0 \\
& & \longrightarrow & \text{Ext}_A^2(N, M) & \xrightarrow{f_1} & \cdots.
\end{array}
\]

Thus we have the exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & \text{Ext}_A^i(N, M) & \xrightarrow{f_1} & \text{Ext}_A^i(N, M) & \longrightarrow & \text{Ext}_A^i(N, M_1) = 0
\end{array}
\]

for all \(i < n\). Since \(I \subseteq \sqrt{\text{ann}_A(N)}\) and \(\text{Ext}_A^i(N, M)\) is annihilated by elements of \(\text{ann}_A(N)\), we have \(f_1^i \text{Ext}_A^i(N, M) = 0\) for a sufficiently large \(l > 0\). Therefore \(\text{Ext}_A^i(N, M) = 0\) for all \(i < n\).

\[
\square
\]

2. MAIN RESULTS

Now we come to the main result of the paper.

Theorem 2.1. Let \(M\) be a finite \(B\)-module for a homomorphism \(A \rightarrow B\) of Noetherian rings and \(I\) an ideal of \(A\) with \(|IM| \neq 0\). Then, the length of a maximal \(M\)-sequence in \(I\) is the same length \(n\), furthermore \(n\) is determined by

\[
\text{Ext}_A^i(A/I, M) = 0 \text{ for all } i < n \text{ and } \text{Ext}_A^0(A/I, M) \neq 0.
\]

Proof. Let us begin with the following claim:
Claim 2.2. Let $a_1, \ldots, a_n \in I$ be an M-sequence. Then there exists a sequence of injective homomorphisms

$$
0 \longrightarrow \text{Hom}_A(A/I, M_n) \longrightarrow \text{Ext}_A^1(A/I, M_{n-1}) \longrightarrow \cdots
$$

$$
\cdots \longrightarrow \text{Ext}_A^{n-1}(A/I, M_1) \longrightarrow \text{Ext}_A^n(A/I, M),
$$

where $M_i = M/(a_1, \ldots, a_i)M$.

Proof. By a_n is M_{n-1}-regular, we have the short exact sequence

$$
0 \longrightarrow M_{n-1} \xrightarrow{a_n} M_{n-1} \longrightarrow M_n \longrightarrow 0.
$$

This leads the long exact sequence

$$
\cdots \longrightarrow \text{Hom}_A(A/I, M_{n-1}) \longrightarrow \text{Hom}_A(A/I, M_n) \longrightarrow \text{Ext}_A^1(A/I, M_{n-1}) \longrightarrow \cdots.
$$

Since a_n is an M_{n-1}-sequence of length 1, by Theorem 1.2, $\text{Hom}_A(A/I, M_{n-1}) = 0$. Thus

$$
\text{Hom}_A(A/I, M_n) \longrightarrow \text{Ext}_A^1(A/I, M_{n-1}).
$$

Next a_{n-1} is M_{n-2}-regular, the short exact sequence

$$
0 \longrightarrow M_{n-2} \xrightarrow{a_{n-1}} M_{n-2} \longrightarrow M_{n-1} \longrightarrow 0.
$$

leads the long exact sequence

$$
\cdots \longrightarrow \text{Ext}_A^1(A/I, M_{n-2}) \longrightarrow \text{Ext}_A^1(A/I, M_{n-1}) \longrightarrow \text{Ext}_A^2(A/I, M_{n-2}) \longrightarrow \cdots.
$$

Since a_n, a_{n-1} is an M_{n-2}-sequence of length 2, by Theorem 1.2, $\text{Ext}_A^1(A/I, M_{n-2}) = 0$, so that

$$
\text{Ext}_A^1(A/I, M_{n-1}) \longrightarrow \text{Ext}_A^2(A/I, M_{n-2}).
$$

Similarly proceeding this way, we get our assertion. □

Let $a_1, \ldots, a_n \in I$ be a maximal M-sequence. If $\text{Ext}_A^n(A/I, M) = 0$ by the above claim, we have $\text{Hom}_A(A/I, M_n) = 0$. By Theorem 1.2, there exists an M_n-regular element $a_{n+1} \in I$ and so we have an M-sequence a_1, \ldots, a_{n+1} in I, but this contradicts to the maximality of a_1, \ldots, a_n. Thus we get the assertion. □

Finally, let us see that a basic result on the Koszul complex can be generalized:

Theorem 2.3. Let M be a finite B-module for a homomorphism $A \to B$ of Noetherian rings and $I = (y_1, \ldots, y_n)$ an ideal of A such that $IM \neq M$. If we set

$$
q = \sup \{i \mid H_i(y, M) \neq 0\},
$$

then any maximal M-sequence in I has length $n - q$.

Proof. Let x_1, \ldots, x_s be a maximal M-sequence in I. We prove this by induction on s. For $s = 0$, every element of I is a zero-divisor of M. By Lemma 1.1, there exists $p \in \text{Ass}_A(M)$ such that $I \subseteq p$. Then, there exists $0 \neq \xi \in M$ such that $p = \text{ann}_A(\xi)$, and hence $I\xi = 0$. Thus $\xi \in H_n(y, M)$ because $H_n(y, M) = \{\xi \in M \mid y_1\xi = \cdots = y_n\xi = 0\}$, so that $q = n$ and the assertion holds in this case.

For $s > 0$, we set $M_1 = M/x_1M$. Then, the short exact sequence

$$
0 \longrightarrow M \xrightarrow{x_1} M \longrightarrow M_1 \longrightarrow 0
$$

leads the long exact sequence (see [3, Proposition 1.6.11]),

$$
\cdots \longrightarrow H_{i-1}(y, M) \xrightarrow{x_1} H_i(y, M) \longrightarrow H_i(y, M_1) \longrightarrow H_{i-1}(y, M_1) \longrightarrow \cdots.
$$
By [2, Theorem 16.4], \(\ker (H_i(y, M)) = 0 \), so that
\[
\ker (H_i(y, M)) \to H_i(y, M_1) = \text{im } x_1 = 0,
\]
\[
\text{im } (H_i(y, M_1)) \to H_{i-1}(y, M)) = \ker x_1 = H_{i-1}(y, M).
\]
Thus we have the short exact sequence
\[
0 \to H_i(y, M) \to H_i(y, M_1) \to H_{i-1}(y, M) \to 0
\]
for all \(i \). If \(H_{q+1}(y, M_1) = 0 \) then \(H_q(y, M) = 0 \) from the above exact sequence. But this is a contradiction, hence \(H_{q+1}(y, M_1) \neq 0 \). Since \(H_{i-1}(y, M) = H_i(y, M) = 0 \) for all \(i > q+1 \), so that \(H_i(y, M_1) = 0 \). This means that \(q+1 = \text{sup} \{ i \mid H_i(y, M_1) \neq 0 \} \). Since \(M_1 \) is a finite \(B \)-module and \(M_1 \neq IM_1 \), by the inductive hypothesis, \(s - 1 = n - (q + 1) \). Therefore \(s = n - q \). □

References

Masaru Kageyama, Department of General Education, Toyama National College of Maritime Technology, 1-2 Neriya, Ebie, Imizu-shi, Toyama 933-0293, Japan
E-mail address: kageyama@toyama-cmt.ac.jp