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ABSTRACT

We propose a CGM (conjugate gradient method) ap-
proach to subspace based blind channel identification.
The algorithm estimates (1) the channel order, (2) the
noise variance, (3) the noise subspace, and them identi-
fies (4) channel impulse response without using the eigen-
value decomposition. The special features of the pro-
posed algorithm are (1) accurate channel order estima-
tion and (2) the reduction of computational complexity
using CGM. Numerical examples show the effectiveness
of the proposed algorithm.

1. INTRODUCTION

A blind channel identification algorithm is a major con-
cern to most researchers in various signal processing and

communication fields [1, 2, 3, 4, 5]. Among then, Moulines’

method based on the second order statistics of the re-
ceived signal is most effective approaches to blind chan-
nel identification. The Moulines’ method [2] gives good
performance and well works under the noisy environment
by the use of the principal component analysis. However,
the Moulines’ method requires (1) accurate channel or-
der estimation in fact that its performance is extremely
sensitive to channel order mismatch, and (2) a rather
large amount of computation for eigenvalue decompo-
sition and the high computational complexity become
disadvantageous for its adaptive implementation.

For those problems, Abed-Meraim et al. [3] pro-
posed linear prediction algorithm with handled an over-
estimated channel order, while its performance is very
sensitive to the observation noise. Moreover, Liavas et
al. [4] have proposed channel order estimation based on
eigenvalue decomposition. However, its approach still
needs high SNR for good performance. Although Yang
[5] proposed the subspace tracking method without using
eigenvalue decomposition for signal and noise subspaces
estimation, its approach has made an unrealistic assump-
tion that channel order is known.

To overcome the drawbacks, we propose a new algo-

rithm for estimating the channel impulse response us-
ing second order statistics of received signal. The algo-
rithm estimates the channel order, the noise variance,
the noise subspace, and then channel impulse response
using CGM (conjugate gradient method). By avoiding
the use of eigenvalue decomposition, the proposed algo-
rithm reduces the computational complexity. It is shown
through numerical examples that the proposed algorithm
is quite effective and practical.

2. PROBLEM FORMULATION

Let x(t) be the received signal at noisy communication
channel with impulse response h(t), i.e.,

z(t) := d(t) * h(t) + v(t) (1)

where d(t) := Y, dn0(t — nT') denotes the information
signal to be transmitted every T, * the convolution and
v(t) the additive observation noise given by AWGN. The
transmitted information symbol dy is assumed to satisfy

E [d[] =0, K [dgdm] =0¢m, F [dg’l}(t)] =0. (2)

For the blind channel identification using second or-
der statistics of received signal, the channel output signal -
x(t) is oversampled at t = nT + £51T to get

L
2P =3 WP dpy + o (3)
=0
where 2P = z(nT + (p — 1)T/P), hP = h(nT +

(p— 1)T/P) and v := v(nT + (p — )T/P) for p =
1,2,---, P.

It is convenient to express Eq.(3) in terms of vector
form:

L
Ty = Z hnfzdn + VUn (4)
£=0
where x,, 1= [1‘571), $72) ZESLP)], [h(l) he
hglp)] and Un [vn y 0’512)7 Tty 7(lP)]'
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Furthermore, let a given positive integer N, we define

a received signal vector = := [¢Z, =L | .-, L T
from Eq.(4) to get matrix form: -
z:=Hyd+v (5)

where d := [cl,,,7 dn—1, 5 dnep-nN]T, v = [0l vI_

<, oIy )T, and Hy is an P(N + 1) x (L+N+
block Toeplitz matrix called as the Sylvester matriz [1,
of order N associated with the P(L+ 1) x 1 vector h :
[h’gv hfa T hz]T

The blind channel identification problem consists in
estimating the P(L 4 1) x 1 vector h form the second
order statistics of received signal &, which can be written
under the assumption of Eq.(2) as

)
|

m'—“‘

R, :=E [zz"] = HyHE, + 021, (6)
where E [-] denotes the ensemble average and o2 is noise
variance of v(t). The SNR (signal to noise radio) is de-
fined by

P
e TRl Z”"@“Q -

P(N +1)o

In this paper, we exclusively use the symbols, 1 :=
P(N +1)and p:= L+ N + 1, for simplicity.

3. CONVENTIONAL METHOD [2]

Under the condition that Hy is full column rank, that
is rank (Hx) = p, Eq.(6) can be diagonalization as

Rar = UxAJ:U;TF
_ Ag+02l, O vl
- [USU’U] 9] 021’] 0 UT (8)
= Udiag (M, A, .. A )UT + 020,U7,
where

Up = Uy, Uy, Ay :=diag (A1, Mg, -+, Ay),
Us = [ula Uz, -, up]; Uy = {up—l—l’ Upt2, ~
o o=diag AP, A AD) A S,

and the column-space of Hy, the so-called signal sub-
space, is the orthogonal complement of the column-space
of U, the so-called noise subspace.

It is easily seen that

ulHy =0, fori=p+1, p+2, .-, n  (10)
Therefore, by using the structural identity u! Hy =
h,TLlé [1, 2], Eq.(10) can be rewritten as

Table 1. CGM procedure
Initial value: £ =1

1. zl(s) =0

2. q1(s) = b(s) — A(s)z1(s)
3. 91(s) = qu(s)
Iteration: for £=2, 3, ---, n

_qe()Tge(s)
d-0u(s) = g™ As)g:

5. 2041(s) = 2a(s) + oe(9)92(5)
6. get1(s) = au(s) — au(s)A(s)ge(s)
7.if ||ge+1(s)|| < € then break, else go to 8

_ qe1(9)T ey ()
8. fe(s) = q:(s)Tqe(s)

9. ge+1(8) = qe1(8) + Bege(s)

where ng) is the P(L 4 1) x p Sylvester matriz of order

AT \T T
L associated with u! = [u((;) , ugz) , e, 'u,g\l,) ].
The solution is conventionally calculated as the vec-

tor h that minimizes

n
S uPul" | h(12)

i=p+1

/r, B
J(h)y = > [ U |? = hT
i=p+1

subject to ||h| = 1.

However, Moulines’ method [1, 2] requires a rather
large amount of computation for eigenvalue decomposi-
tion in Egs.(8) and (12). Furthermore, it is difficult to
determine the value of p (in Eq.(8) or Eq.(9)) to obtain
the channel order L(= p — N — 1) in a practical system.
Recently, Liavas [4] proposed a criterion for discriminat-
ing A\, and A,41, while it still requires high SNR for the
correct channel order estimation.

4. PROPOSED METHOD

For the autocorrelation matrix R, in Eq.(6) and a given
s (an estimate of noise variance ¢2), let

A(s) := Ry — sl = HNH N + (02 — 8)I,,. (13)

» Un), 5(9) Then perform the CGM procedure [8] in Table 1 for

A(s)z(s) :=b(s) (14)

where z(s) is the 7 x 1 unknown vector and b(s) the nx 1
vector given by sum of all column vectors in A(s), i.e.,

b(s) == A(s)[1, 2, ---, n]T. (15)

Note that our goal is not the estimation of optimum so-
lution 2z,p¢(s) in Eq.(14) but channel order, noise vari-
ance, noise subspace and then channel impulse response
by calculating Eq.(14) using the property of CGM.

In the next subsection, we briefly introduce the pro-
posed method without using eigenvalue decomposition.
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4.1. Estimation of Channel Order

When we define the function f(s) := |qe(s)||* using a
residual vector {qe(s)}, in Table 1, perform the CGM for
Eq.(14). Then the CGM can obtain the good solution
Zopt(8) if the iteration number of CGM is more than the
number of the different eigenvalue, denoted by v, of the
matrix A(s), that is, f(s) = |lg,(s)[|? ~0and y=p+1
from CGM property and Eq.(8) [6, 7, 8]. Hence, we can
get the channel order L(=p — N + 1) using p =~y — L.

4.2. Estimation of Noise Variance

The shape of the f(s) is as shown in general in Fig.1.
Hence, we gather from Fig.1 as

[Property of f(s)]
(1) f(s)=0 & s=X\, i=1,2---,p
(2) In the neighborhood of s = 02, it is convex and has

unique minimum f(o?2).

Thus, the noise variance o2 is obtained as the minimum
for function f(s). Though there are several ways to re-
search the noise variance o2, we can be found by follow-
ing two step [9]:

First step (Estimation of range): Let sp = 0 and
an appropriate step size A(> 0), we find f(s;—1) >
f(si) > f(siy1) by iterating s; := s;—1 + A.
Second step (Estimation of accurate value): For

51 < a;f < 8i+1, we may get a more accurate value
of 02 by using the bisection method.

4.3. Estimation of Noise Subspace

If the noise variance o2 is good estimated in Section 4.2,
the residual vectors g¢(s) in Table.1 has the property
[6, 7, 8]:

[Property of qu(s)]
(1) qe(s)"qry1(s) =0, (<k.
(2) When perform the CGM procedure in Table 1 for

Eq.(14), let Q = [q1(s),q2(s), - ,qp(s)]. Then
the column space of @ is expressed as

Span(Q) = Span(Hy) = Span(A(c?))
under the condition of Eq.(15).

Thus, the basis of noise subspace, denoted by {v;}!_f,

can be found by

vi = (I - Q,Q} )y (16)

from Eq.(10) and Property of g¢(s), i.e., Span([vy, vq, ...

vy-p|) = Span(U,), where y; is random vector.
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Fig. 1. Typical behavior of f(s) = ||g,(s)||*

4.4. Estimation of Impulse Response

The channel impulse response can estimate based on
Eq.(11) and the previous subsection. That is, the vectors
{v;} (span noise subspace Span(U,)) can construct the
set of linear equations with unknown vector h in Eq.(11).
Though there are several ways to solve in Eq.(11), we
shall employ in this paper as
(a) if P =2and N = L, h is simply and directly given

by
T 0 -1
h = aul” [ L0 ] £=0,1,---,L
where ug”)T are the 2 x 1 component vectors for
a basis of noise subspace in Eqs.(8) and (9), i.e.,
T T T
,u’?; = [u(()n) 7u(177) T 7“’%,) ]7
(b) otherwise, directly solve Eq.(11) for h by Gaussian
elimination subject to ||h| =1,

to attain the minimum computational complexity.

5. NUMERICAL EXAMPLES

5.1. Simulation Conditions

The simulations are done for random real channel with
white Gaussian information signal:
(i) The information signal {d,} to the communication
channel is assumed to be zero mean, unit variance
white Gaussian.

(i) The communication channel is given by random

real channel with hép ) being independent zero mean
and unit variance Gaussian variable.

We have considered here each case for P, L, and N,

while for space we have shown only figures for a set of

100 randomly real channel with P =2 and L = 4.

5.2. Simulation Result

To compare the performance of convergence speed and
estimation accuracy for the algorithms, we show in Figs.2
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Channel Model : Random Real Channel
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Fig. 2. Comparison of convergence behavior between
the proposed and Moulines’ methods.
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Fig. 3. Comparison of estimation accuracy behavior
between proposed and Moulines’ method.
and 3 the comparison of NEE (Normalized Estimation

Error) for the channel impulse response defined by

100
NEB(n) := 1 > 10logy,
=1

2

hi(n)
i (n) |2

[[hi(n)]2

as performance measure. It is seen from Fig.2 that the
proposed method can achieve exactly the same conver-
gence speed as the Moulines” method with the correct
channel order L = 4, its convergence speed can be im-
proved by selecting the step size A.

We compare in Fig.3 estimation accuracy for the var-
ious SNR with 200 points average of iteration number (or
number of received samples) n = 19,801 ~ 20,000. It is
seen form Fig.3 that the proposed method is good per-
formance and is similar to the Moulines’ method.

We finally compare the complexity of proposed and
Moulines’ methods. We can see from Fig.4 that the pro-
posed method required less computational complexity
compared to Moulines’ method.

Moreover, it is also easily guessed from Figs.2 and
3 that the proposed method can estimate the channel
order correctly, and get the accurate noise variance o2
by increasing the iteration number.

10°
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Fig. 4. Computational complexity in arithmetic opera-
tions.

6. CONCLUSION

We have shown that the proposed algorithm is effective
using computer simulation. By avoiding the use of eigen-
value decomposition, the proposed method reduces the
computational complexity without sacrificing the estima-
tion accuracy and convergence speed.
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