Block idempotents of the crossed Burnside ring of S_5

ODA Fumihito *

Department of Liberal Arts,
Toyama National College of Technology
oda@toyama-nct.ac.jp

1 Crossed Burnside rings

This note is based on [OY 03]. The notation and terminology used in this note are standard. The reader may refer to any books on finite group theory, the representation theory of finite groups and [OY 01]. Let \mathcal{O} be a complete discrete valuation ring with quotient field \mathbb{K} and residue field k of characteristic p. Let P be a p-subgroup of G and e a p-block of $\mathcal{O}C_G(P)$. We define an idempotent

$$[P,e] = \sum_{\theta \in e} e_{P,\theta},$$

where $e_{P,\theta}$'s are primitive idempotents of $\mathbb{K} \otimes X\Omega(G,\mathcal{P},G^c)$ indexed by P. We write $\mathcal{B}(G)$ as the complete set of representatives of conjugacy classes of $\{[P,e] \mid P \in \mathcal{P}, e \in Bl(C_G(P))\}$. Let \sim_p be the equivalence relation on $\mathcal{B}(G)$ defined by

$$[P, e] \sim_p [Q, f] \iff \omega_{P,n}(x) \equiv \omega_{Q,\theta}(x) \, \forall x \in X\Omega(G, \mathcal{P}, G^c),$$

where $\eta \in e$ and $\theta \in f$. We pointed out the following theorems in [OY 03] without proof.

- (1.1) Theorem. Let $Q \leq P \leq G$ and $Q, P \in \mathcal{P}$. Let (P, e) and (Q, f) be Brauer pairs of G. Then $[P, e] \sim_p [Q, f]$ if and only if $(P, e) \supseteq (Q, f)$.
- (1.2) Theorem. Let b be a block of OG and

$$E_b = \sum_{(1,b)\subseteq (P,e)} [P,e].$$

Then the element E_b is a primitive idempotent of $\mathcal{O}X\Omega(G,\mathcal{P},G^c)$, and conversely any primitive idempotent of $\mathcal{O}X\Omega(G,\mathcal{P},G^c)$ has this form.

2 Symmetric group

(2.1) Brauer pairs for symmetric groups. We denote by N the positive integers and consider the product order in $\mathbb{N} \times \mathbb{N}$. If $(a, b) \in \mathbb{N} \times \mathbb{N}$ and $T \subseteq \mathbb{N} \times \mathbb{N}$ (Young tableau) we set

$$D_{(a,b)}(T) = T - \{(c,d) \in T \mid (a,b) \le (c,d), (c+1,d+1) \notin T\}.$$

Let us denote by S(E) the group of bijections of finite set E. We denote by e_T the p-block of $\mathcal{O}S(E)$ associated to irreducible character χ_T .

^{*}This work was supported in part by the JSPS.

ODA Fumilito

(2.2) Theorem [Puig] (1987) [Pu87] Let $(a,b) \in \mathbb{N} \times \mathbb{N}$ and set $T' = D_{(a,b)}(T)$. Assume that $|T| \equiv |T'| \mod p$ and let P' be a p-subgroup of S(E) such that $P \subseteq P'$ and $|E^{P'}| = |T'|$. Then $(P, Br_P(e_T)) \subseteq (P', Br_{P'}(e_{T'}))$.

We can obtain a formula of p-blocks of $\mathcal{O}X\Omega(G,\mathcal{P},G^c)$ by using Puig's Theorem.

(2.3) EXAMPLE. $G = S_5$ and p = 2. Then the representatives of $C(\mathcal{P})$ are $1, C_{2a} = <(4,5)>, C_{2b} = <(2,3)(4,5)>, E_{4a} = <(2,3)(4,5), (2,4)(3,5)>,$ $C_4 = <(2,4,3,5)>, E_{4b} = <(2,3), (4,5)>, D_8 = <(4,5), (2,3), (2,4)(3,5)>.$ Let s = (1,2,3) and t = (1,2,3,4,5). The idempotents of $KX\Omega(G,\mathcal{P},G^c)$ are given as follows:

$$[1,b_1] = 11/1800(G/1)_1 - 1/90(G/1)_s + 1/75(G/1)_t,$$

$$[1, b_2] = 1/450(G/1)_1 + 1/90(G/1)_s - 1/75(G/1)_t$$

$$[C_{2a}, d_1] = -1/36(G/1)_1 - 1/18(G/1)_s + 1/18(G/C_{2a})_1 + 1/9(G/C_{2a})_s,$$

$$[C_{2a}, d_2] = -1/18(G/1)_1 + 1/18(G/1)_s + 1/9(G/C_{2a})_1 - 1/9(G/C_{2a})_s,$$

$$[C_{2b}, e_1] = -1/8(G/1)_1 + 1/4(G/C_{2b})_1,$$

$$[E_{4a}, f_1] = 1/12(G/1)_1 - 1/4(G/C_{2b})_1 + 1/6(G/E_{4a})_1,$$

$$[C_4, g_1] = -1/4(G/C_{2b})_1 + 1/2(G/C_4)_1,$$

$$[E_{4b}, h_1] = 1/4(G/1)_1 - 1/2(G/C_{2a})_1 - 1/4(G/C_{2b})_1 + 1/2(G/E_{4b})_1$$

$$[D_8, i_1] = 1/2G/C_{2b})_1 - 1/2(G/E_{4a})_1 - 1/2(G/C_4)_1 - 1/2(G/E_{4b})_1 + (G/D_8)_1.$$

Thus 2-block idempotents of $\mathcal{O}X\Omega(G,\mathcal{P},G^c)$ given by Theorem (1.2) are

$$E_{b_1} = [1, b_1] + [C_{2a}, d_1] + [C_{2b}, e_1] + [E_{4a}, f_1] + [C_4, g_1] + [E_{4b}, h_1] + [D_8, i_1],$$

$$E_{b_2} = [1, b_2] + [C_{2a}, d_2].$$

Moreover, the coefficients of the idempotents are now presented.

$$E_{b_1} = 14/75(G/1)_1 - 1/15(G/1)_s + 1/75(G/1)_t - 4/9(G/C_{2a})_1 + 1/9(G/C_{2a})_s - 1/3(G/E_{4a})_1 + (G/D_8)_1,$$

$$E_{b_2} = -14/75(G/1)_1 + 1/15(G/1)_s - 1/75(G/1)_t + 1/9(G/C_{2a})_1 - 1/9(G/C_{2a})_s.$$

The identity of $\mathcal{O} \otimes X\Omega(G, \mathcal{P}, G^c)$ is

$$E_{b_1} + E_{b_a} = 2/15(G/1)_1 - 1/3(G/C_{2a}) - 1/3(G/E_{4a}) + (G/D_8).$$

References

- [OY 01] F. Oda and T. Yoshida, Crossed Burnside rings I. The fundamental Theorem, J. Algebra, 236, 29-79 (2001).
- [OY 03] F. Oda and T. Yoshida, Crossed Burnside rings III, preparation (2003).
- [Pu87] L. Puig, The Nakayama conjectures and the Brauer pairs, Publ. Math. Univ. Paris VII, 25, 195-205 (1987).

(2003.11.21 受理)